matteo-the-prestige/matteo_env/Lib/site-packages/jsonpickle/pickler.py

744 lines
25 KiB
Python
Raw Normal View History

# Copyright (C) 2008 John Paulett (john -at- paulett.org)
# Copyright (C) 2009-2018 David Aguilar (davvid -at- gmail.com)
# All rights reserved.
#
# This software is licensed as described in the file COPYING, which
# you should have received as part of this distribution.
from __future__ import absolute_import, division, unicode_literals
import decimal
import warnings
import sys
import types
from itertools import chain, islice
from . import compat
from . import util
from . import tags
from . import handlers
from .backend import json
from .compat import numeric_types, string_types, PY3, PY2
def encode(
value,
unpicklable=True,
make_refs=True,
keys=False,
max_depth=None,
reset=True,
backend=None,
warn=False,
context=None,
max_iter=None,
use_decimal=False,
numeric_keys=False,
use_base85=False,
fail_safe=None,
indent=None,
separators=None,
):
"""Return a JSON formatted representation of value, a Python object.
:param unpicklable: If set to False then the output will not contain the
information necessary to turn the JSON data back into Python objects,
but a simpler JSON stream is produced.
:param max_depth: If set to a non-negative integer then jsonpickle will
not recurse deeper than 'max_depth' steps into the object. Anything
deeper than 'max_depth' is represented using a Python repr() of the
object.
:param make_refs: If set to False jsonpickle's referencing support is
disabled. Objects that are id()-identical won't be preserved across
encode()/decode(), but the resulting JSON stream will be conceptually
simpler. jsonpickle detects cyclical objects and will break the cycle
by calling repr() instead of recursing when make_refs is set False.
:param keys: If set to True then jsonpickle will encode non-string
dictionary keys instead of coercing them into strings via `repr()`.
This is typically what you want if you need to support Integer or
objects as dictionary keys.
:param numeric_keys: Only use this option if the backend supports integer
dict keys natively. This flag tells jsonpickle to leave numeric keys
as-is rather than conforming them to json-friendly strings.
Using ``keys=True`` is the typical solution for integer keys, so only
use this if you have a specific use case where you want to allow the
backend to handle serialization of numeric dict keys.
:param warn: If set to True then jsonpickle will warn when it
returns None for an object which it cannot pickle
(e.g. file descriptors).
:param max_iter: If set to a non-negative integer then jsonpickle will
consume at most `max_iter` items when pickling iterators.
:param use_decimal: If set to True jsonpickle will allow Decimal
instances to pass-through, with the assumption that the simplejson
backend will be used in `use_decimal` mode. In order to use this mode
you will need to configure simplejson::
jsonpickle.set_encoder_options('simplejson',
use_decimal=True, sort_keys=True)
jsonpickle.set_decoder_options('simplejson',
use_decimal=True)
jsonpickle.set_preferred_backend('simplejson')
NOTE: A side-effect of the above settings is that float values will be
converted to Decimal when converting to json.
:param use_base85:
If possible, use base85 to encode binary data. Base85 bloats binary data
by 1/4 as opposed to base64, which expands it by 1/3. This argument is
ignored on Python 2 because it doesn't support it.
:param fail_safe: If set to a function exceptions are ignored when pickling
and if a exception happens the function is called and the return value
is used as the value for the object that caused the error
:param indent: When `indent` is a non-negative integer, then JSON array
elements and object members will be pretty-printed with that indent
level. An indent level of 0 will only insert newlines. ``None`` is
the most compact representation. Since the default item separator is
``(', ', ': ')``, the output might include trailing whitespace when
``indent`` is specified. You can use ``separators=(',', ': ')`` to
avoid this. This value is passed directly to the active JSON backend
library and not used by jsonpickle directly.
:param separators:
If ``separators`` is an ``(item_separator, dict_separator)`` tuple
then it will be used instead of the default ``(', ', ': ')``
separators. ``(',', ':')`` is the most compact JSON representation.
This value is passed directly to the active JSON backend library and
not used by jsonpickle directly.
>>> encode('my string') == '"my string"'
True
>>> encode(36) == '36'
True
>>> encode({'foo': True}) == '{"foo": true}'
True
>>> encode({'foo': [1, 2, [3, 4]]}, max_depth=1)
'{"foo": "[1, 2, [3, 4]]"}'
"""
backend = backend or json
context = context or Pickler(
unpicklable=unpicklable,
make_refs=make_refs,
keys=keys,
backend=backend,
max_depth=max_depth,
warn=warn,
max_iter=max_iter,
numeric_keys=numeric_keys,
use_decimal=use_decimal,
use_base85=use_base85,
fail_safe=fail_safe,
)
return backend.encode(
context.flatten(value, reset=reset), indent=indent, separators=separators
)
class Pickler(object):
def __init__(
self,
unpicklable=True,
make_refs=True,
max_depth=None,
backend=None,
keys=False,
warn=False,
max_iter=None,
numeric_keys=False,
use_decimal=False,
use_base85=False,
fail_safe=None,
):
self.unpicklable = unpicklable
self.make_refs = make_refs
self.backend = backend or json
self.keys = keys
self.warn = warn
self.numeric_keys = numeric_keys
self.use_base85 = use_base85 and (not PY2)
# The current recursion depth
self._depth = -1
# The maximal recursion depth
self._max_depth = max_depth
# Maps id(obj) to reference IDs
self._objs = {}
# Avoids garbage collection
self._seen = []
# maximum amount of items to take from a pickled iterator
self._max_iter = max_iter
# Whether to allow decimals to pass-through
self._use_decimal = use_decimal
if self.use_base85:
self._bytes_tag = tags.B85
self._bytes_encoder = util.b85encode
else:
self._bytes_tag = tags.B64
self._bytes_encoder = util.b64encode
# ignore exceptions
self.fail_safe = fail_safe
def reset(self):
self._objs = {}
self._depth = -1
self._seen = []
def _push(self):
"""Steps down one level in the namespace."""
self._depth += 1
def _pop(self, value):
"""Step up one level in the namespace and return the value.
If we're at the root, reset the pickler's state.
"""
self._depth -= 1
if self._depth == -1:
self.reset()
return value
def _log_ref(self, obj):
"""
Log a reference to an in-memory object.
Return True if this object is new and was assigned
a new ID. Otherwise return False.
"""
objid = id(obj)
is_new = objid not in self._objs
if is_new:
new_id = len(self._objs)
self._objs[objid] = new_id
return is_new
def _mkref(self, obj):
"""
Log a reference to an in-memory object, and return
if that object should be considered newly logged.
"""
is_new = self._log_ref(obj)
# Pretend the object is new
pretend_new = not self.unpicklable or not self.make_refs
return pretend_new or is_new
def _getref(self, obj):
return {tags.ID: self._objs.get(id(obj))}
def flatten(self, obj, reset=True):
"""Takes an object and returns a JSON-safe representation of it.
Simply returns any of the basic builtin datatypes
>>> p = Pickler()
>>> p.flatten('hello world') == 'hello world'
True
>>> p.flatten(49)
49
>>> p.flatten(350.0)
350.0
>>> p.flatten(True)
True
>>> p.flatten(False)
False
>>> r = p.flatten(None)
>>> r is None
True
>>> p.flatten(False)
False
>>> p.flatten([1, 2, 3, 4])
[1, 2, 3, 4]
>>> p.flatten((1,2,))[tags.TUPLE]
[1, 2]
>>> p.flatten({'key': 'value'}) == {'key': 'value'}
True
"""
if reset:
self.reset()
return self._flatten(obj)
def _flatten(self, obj):
#########################################
# if obj is nonrecursive return immediately
# for performance reasons we don't want to do recursive checks
if PY2 and isinstance(obj, types.FileType):
return self._flatten_file(obj)
if util.is_bytes(obj):
return self._flatten_bytestring(obj)
if util.is_primitive(obj):
return obj
# Decimal is a primitive when use_decimal is True
if self._use_decimal and isinstance(obj, decimal.Decimal):
return obj
#########################################
self._push()
return self._pop(self._flatten_obj(obj))
def _max_reached(self):
return self._depth == self._max_depth
def _flatten_obj(self, obj):
self._seen.append(obj)
max_reached = self._max_reached()
try:
in_cycle = _in_cycle(obj, self._objs, max_reached, self.make_refs)
if in_cycle:
# break the cycle
flatten_func = repr
else:
flatten_func = self._get_flattener(obj)
if flatten_func is None:
self._pickle_warning(obj)
return None
return flatten_func(obj)
except (KeyboardInterrupt, SystemExit) as e:
raise e
except Exception as e:
if self.fail_safe is None:
raise e
else:
return self.fail_safe(e)
def _list_recurse(self, obj):
return [self._flatten(v) for v in obj]
def _get_flattener(self, obj):
list_recurse = self._list_recurse
if util.is_list(obj):
if self._mkref(obj):
return list_recurse
else:
self._push()
return self._getref
# We handle tuples and sets by encoding them in a "(tuple|set)dict"
if util.is_tuple(obj):
if not self.unpicklable:
return list_recurse
return lambda obj: {tags.TUPLE: [self._flatten(v) for v in obj]}
if util.is_set(obj):
if not self.unpicklable:
return list_recurse
return lambda obj: {tags.SET: [self._flatten(v) for v in obj]}
if util.is_dictionary(obj):
return self._flatten_dict_obj
if util.is_type(obj):
return _mktyperef
if util.is_object(obj):
return self._ref_obj_instance
if util.is_module_function(obj):
return self._flatten_function
# instance methods, lambdas, old style classes...
self._pickle_warning(obj)
return None
def _ref_obj_instance(self, obj):
"""Reference an existing object or flatten if new"""
if self.unpicklable:
if self._mkref(obj):
# We've never seen this object so return its
# json representation.
return self._flatten_obj_instance(obj)
# We've seen this object before so place an object
# reference tag in the data. This avoids infinite recursion
# when processing cyclical objects.
return self._getref(obj)
else:
max_reached = self._max_reached()
in_cycle = _in_cycle(obj, self._objs, max_reached, False)
if in_cycle:
# A circular becomes None.
return None
self._mkref(obj)
return self._flatten_obj_instance(obj)
def _flatten_file(self, obj):
"""
Special case file objects
"""
assert not PY3 and isinstance(obj, types.FileType)
return None
def _flatten_bytestring(self, obj):
if PY2:
try:
return obj.decode('utf-8')
except UnicodeDecodeError:
pass
return {self._bytes_tag: self._bytes_encoder(obj)}
def _flatten_obj_instance(self, obj):
"""Recursively flatten an instance and return a json-friendly dict"""
data = {}
has_class = hasattr(obj, '__class__')
has_dict = hasattr(obj, '__dict__')
has_slots = not has_dict and hasattr(obj, '__slots__')
has_getnewargs = util.has_method(obj, '__getnewargs__')
has_getnewargs_ex = util.has_method(obj, '__getnewargs_ex__')
has_getinitargs = util.has_method(obj, '__getinitargs__')
has_reduce, has_reduce_ex = util.has_reduce(obj)
# Support objects with __getstate__(); this ensures that
# both __setstate__() and __getstate__() are implemented
has_getstate = hasattr(obj, '__getstate__')
# not using has_method since __getstate__() is handled separately below
if has_class:
cls = obj.__class__
else:
cls = type(obj)
# Check for a custom handler
class_name = util.importable_name(cls)
handler = handlers.get(cls, handlers.get(class_name))
if handler is not None:
if self.unpicklable:
data[tags.OBJECT] = class_name
return handler(self).flatten(obj, data)
reduce_val = None
if self.unpicklable:
if has_reduce and not has_reduce_ex:
try:
reduce_val = obj.__reduce__()
except TypeError:
# A lot of builtin types have a reduce which
# just raises a TypeError
# we ignore those
pass
# test for a reduce implementation, and redirect before
# doing anything else if that is what reduce requests
elif has_reduce_ex:
try:
# we're implementing protocol 2
reduce_val = obj.__reduce_ex__(2)
except TypeError:
# A lot of builtin types have a reduce which
# just raises a TypeError
# we ignore those
pass
if reduce_val and isinstance(reduce_val, string_types):
try:
varpath = iter(reduce_val.split('.'))
# curmod will be transformed by the
# loop into the value to pickle
curmod = sys.modules[next(varpath)]
for modname in varpath:
curmod = getattr(curmod, modname)
# replace obj with value retrieved
return self._flatten(curmod)
except KeyError:
# well, we can't do anything with that, so we ignore it
pass
elif reduce_val:
# at this point, reduce_val should be some kind of iterable
# pad out to len 5
rv_as_list = list(reduce_val)
insufficiency = 5 - len(rv_as_list)
if insufficiency:
rv_as_list += [None] * insufficiency
if getattr(rv_as_list[0], '__name__', '') == '__newobj__':
rv_as_list[0] = tags.NEWOBJ
f, args, state, listitems, dictitems = rv_as_list
# check that getstate/setstate is sane
if not (
state
and hasattr(obj, '__getstate__')
and not hasattr(obj, '__setstate__')
and not isinstance(obj, dict)
):
# turn iterators to iterables for convenient serialization
if rv_as_list[3]:
rv_as_list[3] = tuple(rv_as_list[3])
if rv_as_list[4]:
rv_as_list[4] = tuple(rv_as_list[4])
reduce_args = list(map(self._flatten, rv_as_list))
last_index = len(reduce_args) - 1
while last_index >= 2 and reduce_args[last_index] is None:
last_index -= 1
data[tags.REDUCE] = reduce_args[: last_index + 1]
return data
if has_class and not util.is_module(obj):
if self.unpicklable:
data[tags.OBJECT] = class_name
if has_getnewargs_ex:
data[tags.NEWARGSEX] = list(map(self._flatten, obj.__getnewargs_ex__()))
if has_getnewargs and not has_getnewargs_ex:
data[tags.NEWARGS] = self._flatten(obj.__getnewargs__())
if has_getinitargs:
data[tags.INITARGS] = self._flatten(obj.__getinitargs__())
if has_getstate:
try:
state = obj.__getstate__()
except TypeError:
# Has getstate but it cannot be called, e.g. file descriptors
# in Python3
self._pickle_warning(obj)
return None
else:
return self._getstate(state, data)
if util.is_module(obj):
if self.unpicklable:
data[tags.REPR] = '{name}/{name}'.format(name=obj.__name__)
else:
data = compat.ustr(obj)
return data
if util.is_dictionary_subclass(obj):
self._flatten_dict_obj(obj, data)
return data
if util.is_sequence_subclass(obj):
return self._flatten_sequence_obj(obj, data)
if util.is_iterator(obj):
# force list in python 3
data[tags.ITERATOR] = list(map(self._flatten, islice(obj, self._max_iter)))
return data
if has_dict:
# Support objects that subclasses list and set
if util.is_sequence_subclass(obj):
return self._flatten_sequence_obj(obj, data)
# hack for zope persistent objects; this unghostifies the object
getattr(obj, '_', None)
return self._flatten_dict_obj(obj.__dict__, data)
if has_slots:
return self._flatten_newstyle_with_slots(obj, data)
# catchall return for data created above without a return
# (e.g. __getnewargs__ is not supposed to be the end of the story)
if data:
return data
self._pickle_warning(obj)
return None
def _flatten_function(self, obj):
if self.unpicklable:
data = {tags.FUNCTION: util.importable_name(obj)}
else:
data = None
return data
def _flatten_dict_obj(self, obj, data=None):
"""Recursively call flatten() and return json-friendly dict"""
if data is None:
data = obj.__class__()
# If we allow non-string keys then we have to do a two-phase
# encoding to ensure that the reference IDs are deterministic.
if self.keys:
# Phase 1: serialize regular objects, ignore fancy keys.
flatten = self._flatten_string_key_value_pair
for k, v in util.items(obj):
flatten(k, v, data)
# Phase 2: serialize non-string keys.
flatten = self._flatten_non_string_key_value_pair
for k, v in util.items(obj):
flatten(k, v, data)
else:
# If we have string keys only then we only need a single pass.
flatten = self._flatten_key_value_pair
for k, v in util.items(obj):
flatten(k, v, data)
# the collections.defaultdict protocol
if hasattr(obj, 'default_factory') and callable(obj.default_factory):
factory = obj.default_factory
if util.is_type(factory):
# Reference the class/type
value = _mktyperef(factory)
else:
# The factory is not a type and could reference e.g. functions
# or even the object instance itself, which creates a cycle.
if self._mkref(factory):
# We've never seen this object before so pickle it in-place.
# Create an instance from the factory and assume that the
# resulting instance is a suitable examplar.
value = self._flatten_obj_instance(handlers.CloneFactory(factory()))
else:
# We've seen this object before.
# Break the cycle by emitting a reference.
value = self._getref(factory)
data['default_factory'] = value
# Sub-classes of dict
if hasattr(obj, '__dict__') and self.unpicklable:
dict_data = {}
self._flatten_dict_obj(obj.__dict__, dict_data)
data['__dict__'] = dict_data
return data
def _flatten_obj_attrs(self, obj, attrs, data):
flatten = self._flatten_key_value_pair
ok = False
for k in attrs:
try:
value = getattr(obj, k)
flatten(k, value, data)
except AttributeError:
# The attribute may have been deleted
continue
ok = True
return ok
def _flatten_newstyle_with_slots(self, obj, data):
"""Return a json-friendly dict for new-style objects with __slots__."""
allslots = [
_wrap_string_slot(getattr(cls, '__slots__', tuple()))
for cls in obj.__class__.mro()
]
if not self._flatten_obj_attrs(obj, chain(*allslots), data):
attrs = [
x for x in dir(obj) if not x.startswith('__') and not x.endswith('__')
]
self._flatten_obj_attrs(obj, attrs, data)
return data
def _flatten_key_value_pair(self, k, v, data):
"""Flatten a key/value pair into the passed-in dictionary."""
if not util.is_picklable(k, v):
return data
if k is None:
k = 'null' # for compatibility with common json encoders
if self.numeric_keys and isinstance(k, numeric_types):
pass
elif not isinstance(k, string_types):
try:
k = repr(k)
except Exception:
k = compat.ustr(k)
data[k] = self._flatten(v)
return data
def _flatten_non_string_key_value_pair(self, k, v, data):
"""Flatten only non-string key/value pairs"""
if not util.is_picklable(k, v):
return data
if self.keys and not isinstance(k, string_types):
k = self._escape_key(k)
data[k] = self._flatten(v)
return data
def _flatten_string_key_value_pair(self, k, v, data):
"""Flatten string key/value pairs only."""
if not util.is_picklable(k, v):
return data
if self.keys:
if not isinstance(k, string_types):
return data
elif k.startswith(tags.JSON_KEY):
k = self._escape_key(k)
else:
if k is None:
k = 'null' # for compatibility with common json encoders
if self.numeric_keys and isinstance(k, numeric_types):
pass
elif not isinstance(k, string_types):
try:
k = repr(k)
except Exception:
k = compat.ustr(k)
data[k] = self._flatten(v)
return data
def _flatten_sequence_obj(self, obj, data):
"""Return a json-friendly dict for a sequence subclass."""
if hasattr(obj, '__dict__'):
self._flatten_dict_obj(obj.__dict__, data)
value = [self._flatten(v) for v in obj]
if self.unpicklable:
data[tags.SEQ] = value
else:
return value
return data
def _escape_key(self, k):
return tags.JSON_KEY + encode(
k,
reset=False,
keys=True,
context=self,
backend=self.backend,
make_refs=self.make_refs,
)
def _getstate(self, obj, data):
state = self._flatten(obj)
if self.unpicklable:
data[tags.STATE] = state
else:
data = state
return data
def _pickle_warning(self, obj):
if self.warn:
msg = 'jsonpickle cannot pickle %r: replaced with None' % obj
warnings.warn(msg)
def _in_cycle(obj, objs, max_reached, make_refs):
return (
max_reached or (not make_refs and id(obj) in objs)
) and not util.is_primitive(obj)
def _mktyperef(obj):
"""Return a typeref dictionary
>>> _mktyperef(AssertionError) == {'py/type': 'builtins.AssertionError'}
True
"""
return {tags.TYPE: util.importable_name(obj)}
def _wrap_string_slot(string):
"""Converts __slots__ = 'a' into __slots__ = ('a',)"""
if isinstance(string, string_types):
return (string,)
return string